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Abstract. Contrast enhancement is used for many algorithms in com-
puter vision. It is applied either explicitly, such as histogram equalization
and tone-curve manipulation, or implicitly via methods that deal with
degradation from physical phenomena such as haze, fog or underwater
imaging. While contrast enhancement boosts the image appearance, it
can unintentionally boost unsightly image artifacts, especially artifact-
s from JPEG compression. Most JPEG implementations optimize the
compression in a scene-dependent manner such that low-contrast images
exhibit few perceivable artifacts even for relatively high-compression fac-
tors. After contrast enhancement, however, these artifacts become signifi-
cantly visible. Although there are numerous approaches targeting JPEG
artifact reduction, these are generic in nature and are applied either
as pre- or post-processing steps. When applied as pre-processing, ex-
isting methods tend to over smooth the image. When applied as post-
processing, these are often ineffective at removing the boosted artifacts.
To resolve this problem, we propose a framework that suppresses com-
pression artifacts as an integral part of the contrast enhancement proce-
dure. We show that this approach can produce compelling results supe-
rior to those obtained by existing JPEG artifacts removal methods for
several types of contrast enhancement problems.

Keywords: Contrast Enhancement, Dehazing, JPEG Artifacts Removal,
Deblocking

1 Introduction

A commonly applied procedure in low-level computer vision is contrast en-
hancement. This encompasses techniques that boost an image’s global contrast
through manipulations such as tone-curve adjustment, histogram equalization,
and gradient-based enhancement. Such enhancement is beneficial for color seg-
mentation, edge detection, image sharpening, image visualization, and many
other tasks. In addition, spatially varying contrast enhancement is used to dra-
matically improve visibility in turbid media, such as haze, fog, rain, and under-
water imaging.

Virtually all contrast enhancement algorithms operated on the assumption
that the input image is uncompressed and free from significant noise. The reali-
ty, however, is that the vast majority of images available today on the internet
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Fig. 1. This shows the noticeable compression artifacts after contrast enhancement.
Top two rows are a tone-curve adjustment case (Q40) and the bottom two rows are a
dehazing case (Q70). The zoomed-in regions are listed above to show the details. The
characteristics of the blocking artifacts are distinctive in smooth regions (pointed out
by the yellow arrows), while the ringing artifacts are along strong edges (pointed out
by the red arrows). Comparison of our results with those of the deblocking method [10]
applied before or after contrast enhancement results are shown. Note, our method
produces more compelling results for reducing both blocking and ringing artifacts.

or from commodity imaging devices are compressed. Moreover, images coming
from sources that would require contrast enhancement, e.g. surveillance cam-
eras, often have notable amounts of image compression [13]. The most common
compression scheme is by far JPEG and its extension to video, MPEG. The
JPEG compression scheme breaks an input image into 8 × 8 pixel blocks and
applies a discrete cosine transformation (DCT) to each block individually. To
reduce storage space, the DCT coefficients are quantized at various levels – more
quantization gives higher compression but lowers image quality (for more details
see [25]). Lower-quality images exhibit what is termed collectively as “compres-
sion artifacts” that consist of the characteristic blocking artifacts resulting in
discontinuities at the 8× 8 borders, and oscillations or ringing artifacts next to
strong edges.

Early JPEG compression methods use fixed quantization tables for different
quality settings, however, most JPEG schemes now use what is referred to as
optimized JPEG where quantization tables are customized based on the image’s
content [22]. This allows relatively high compression rates with little noticeable
visual artifacts. However, when contrast boosting operations are applied, block-
ing and ringing artifacts become prominently visible as shown in Figure 1. 1

1 JPEG assigns a quality factor, QX, to indicate the subjective quality from 0 to 100
(from low quality to high quality)
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There are several existing methods to reduce JPEG compression artifacts.
These methods are often referred to as “deblocking” or “deringing”. In the con-
text of contrast enhancement, these methods would be applied either before or
after the enhancement process. When applied before the enhancement process,
the algorithms can smooth image details that have small contrast. When ap-
plied as a post-processing step, the effectiveness can be diminished due to the
compression artifacts that were boosted by the contrast enhancement process.
Figure 1 shows an example.

In this paper, we propose a framework based on structure-texture decomposi-
tion to remove the compression artifacts that are amplified in the image contrast
enhancement operation. After the decomposition, contrast enhancement is di-
rectly applied to the structure layer, which is devoid of compression artifacts.
Meanwhile, the texture layer, containing both image details and compress arti-
facts, is carefully processed to suppress only the artifacts. After proper scaling,
the cleaned texture component is added back to the enhanced structure layer to
generate the artifacts free output. Experimental results on various contrast en-
hancement task (e.g. Figure 1) demonstrate that our strategy can produce more
compelling results (both qualitatively and quantitatively) than those of using
general deblocking algorithms in either a pre- or post-processing manner. The
details of our algorithm as well as comparisons with other methods are discussed
in the following sections.

2 Related Work

We discuss relevant related work in the area of JPEG artifacts removal, contrast
enhancement and multi-band image decomposition.

JPEG Artifacts Removal. JPEG artifacts, particularly blocking artifacts, have
long been recognized in the image processing community (e.g. [15, 29]). Despite
this, they remain unsolved and it is still an active area of research (e.g. [6, 28]).
Various methods have been used, which can be broadly categorized into three
different approaches. The first approach treats the compression artifacts as non-
Gaussian noise and attempts to remove them by adaptive local filtering which
adjusts the filter kernel to remove block edges and preserve image edges (e.g. [10]
). The second approach is a reconstruction based approach that incorporates
knowledge on natural images and encodes it into an energy function as a prior.
Commonly used priors include spatial smoothness [27], quantization constraints,
total variation (e.g. [11]), and gradient constraints (e.g. Field of Experts [19]).
The third approach for reducing compression artifacts relies on machine learning
techniques to learn a mapping from compressed images to their uncompressed
version [14, 3]. While these approaches can reduce JPEG artifacts in images,
their application as either a pre- or post-processing step can rarely outperform
our method, which is designed explicitly for contrast enhancement.

Image Contrast Enhancement. Contrast enhancement can be performed in
many ways. The most direct way is to apply a function f to the original pixel
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intensity value, i.e. Ie = f(I). This strategy is known as tone-curve adjustment.
The function can be determined either manually or by selecting from pre-defined
curves functions. Alternatively, the function can also be based on automatic his-
togram equalization, which obtains f by considering the input image’s histogram.
Aside from applying a certain function, local image gradients can also be used
as a cost function that is optimized to boost contrast [17].

Recovering visibility in bad weather or underwater is, in fact, a specific con-
trast enhancement problem [20, 12, 5, 1]. Optically, poor visibility in bad weather
or underwater is due to the substantial presence of medium particles that have
significant size and distribution [20]. Light from the atmosphere and light re-
flected from an object are absorbed and scattered by those particles, leading
to contrast reduction and thus to the degraded images. Most current dehazing
algorithms try to estimate either airlight or transmission map (see [20, 9, 12]).
Regardless the algorithms, the outputs of visibility enhancement show clear in-
crease of contrast.

Multi-band Image Decomposition A common practice in solving computer vision
and computational photography problems is to decompose images into different
layers (or scales) and recombine them (e.g.multi-band image blending [4], optical
flow estimation [26] etc.). The most related work to ours in this direction is
tone-mapping methods (e.g. [7]), which attempt to reduce the contrast of a
high dynamic range image to a limited range while preserving its details. This is
usually achieved by reducing the contrast to the coarse layer and adding back the
initial detail layer. Opposite to this tone-mapping methods’ problem, however,
we want to increase the contrast but not the noise/artifacts. As a result, we need
to put more effort on processing the detail layer.

3 Proposed Method

Our basic pipeline is illustrated in Figure 2. It starts by decomposing the original
input image into two layers: structure and texture layers. The input image can
be considered as the superimposition of the two layers:

I = IS + IT , (1)

where IS is the structure layer corresponding to the main large objects in the im-
age, and IT is the texture layer corresponding to the fine details [2]. The contrast
of the structure layer is then enhanced according to our task (e.g., tone-curve ad-
justment or dehazing). The texture layer is processed through a combination of
image matting and deblocking to remove compression artifacts. Finally the two
layers are recombined to produce the final output. In the following, the details
of each step are discussed.

3.1 Structure-Texture Decomposition

To decompose the input image into a structure layer and texture (high-frequency)
layer, any edge-aware smoothing operation (e.g. bilateral filter [21], weight least



A Contrast Enhancement Framework with JPEG Artifacts Suppression 5

𝑓 

×K 

+ 

Input  𝐼 

Structure 𝐼𝑆 Structure 𝐼𝑆
𝑒 

Texture mask 𝑀 

Deblocked 𝐼𝑇
𝑑  

Texture 𝐼𝑇 

Result 𝐼𝑒 

Fig. 2. The overview of our proposed method. The input image is decomposed into
structure and texture components. The contrast of the structure component is then
boosted directly; the texture component that contains the JPEG artifacts is processed
to reduce compression artifact. The two components are recombined at the last step
to render the final result. In the paper, we amplified the textural part by a factor of
10 and shift it by +0.5 for better visualization.

square filter [8]) can be applied. This procedure produces an image that retains
strong structure and over-smooths out details. We take this image as the struc-
ture layer IS , and obtain the texture layer by calculating the difference between
the input image and its structure layer, ITi = Ii − ISi .

In our problem we applied the the total-variation (TV) image-reconstruction
formulation based on Rudin-Osher-Fatemi method [18]. Based on the TV regu-
larization, the structure layer IS is obtained by minimizing the following objec-
tive function:

min
IS

∑
i

(ISi
− Ii)2 + λ|∇ISi

|, (2)

where i is the pixel index, λ is the regulation parameter and ∇ is the gradient op-
erator. An efficient half-quadratic splitting scheme to solve Eqn.(2) is described
in [23].

This structure-texture decomposition exploits the fact that most of the struc-
ture layer is related to larger gradient magnitudes, while the texture layer cap-
tures both fine image details and compression artifacts that exhibit smaller gra-
dient magnitudes. The parameter λ is important for controlling this separation
and needs to be adjusted according to the compression factor, i.e., more com-
pression requires λ to be increased. We show the values of λ used for different
compression levels in the experiments section. There are methods for deblocking
using TV regularization (e.g. [11]). The main difference here is that they do not
explicitly process the texture layer, while our method put significant effort on
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Fig. 3. This shows two examples of structure-texture decomposition in uncompressed
and compressed image (Q40) pairs. The structure similarity index measurement (SSIM)
[24] values (in ×100 scale in the paper) between each pair are shown in the brackets.
Notice that most of the characteristic compression artifacts exist in the texture layer,
while the structure layer of the compressed image resembles that of the uncompressed
image.

processing the texture layer as will be described later. As a result, TV-based de-
blocking methods tend to suffer from over-smoothing, while ours preserves more
details.

Figure 3 shows two examples of the structure-texture decomposition result-
s for the same images: one image is compressed and the other is not. As can
be observed, unlike the texture layers that contain different information due
to the artifacts, the structure layers are almost identical (both from the visual
quality perspective and from the structure similarity index measurement, SSIM,
perspective [24]). This shows the effectiveness of the TV regularization in pro-
ducing a structure layer that significantly filter out any compression artifacts. As
such, this image layer is considered to be artifacts free and suitable to be boost-
ed using the desired enhancement operation directly, resulting in the enhanced
version of the structure, IeS .

3.2 Reducing Artifacts in the Texture Layer

Since the texture layer contains both scene details and compression artifacts, it
needs further refinement to be able to remove artifacts and to keep scene details.
To do this, we create a mask M that separates regions, where the most scene
details are presence, from the remaining regions. Having created the mask, for the
regions inside the mask, we refine them further to remove potential ringing and
blocking artifacts. For the remaining regions, which are those outside the mask,
we remove the content altogether, since the content is most likely compression
artifacts.
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Fig. 4. This shows two examples of the scene detail map generation. The initial results
obtained by checking DCT coefficients are rough estimations. A soft matting technique
can help refine the map by applying it to the structure layer, and the result is well
aligned with the objects in the images

Scene Detail Extraction To create the image mask, M , we apply the discrete
cosine transform (DCT) to each 8 × 8 patches in the texture layer. We use
the DCT high-frequency layer to serve as a likelihood of the scene details, i.e.
stronger high-frequency DCT coefficients means more details. Denoting the 8×8
DCT of one block as matrix B, then the likelihood of this block to be part of
the scene details can be expressed as:

t =
∑
u,v

B2
u,v −B2

1,1 −B2
1,2 −B2

2,1, (3)

where u, v denotes the position in the DCT. We take the sum of squares of all D-
CT coefficients except B1,1, B1,2 and B2,1, and apply a threshold to the likelihood
to make a binary indication of each block. The threshold we use is empirically
set to 0.1. This initial block-wise estimation of texture region, denoted as M̂ , is
a coarse estimate, as shown in the second column of Figure 4.

This initial mask provides the regions of image details, but is too coarse
for practical use. Thus, we apply a refinement step to better align the texture
region with the structure layer. For this, we use a soft matting technique (inspired
by [12]) by minimizing the following function on the scene detail map M :

min
m

(m− m̂)>(m− m̂) + αm>Lsm, (4)

where m and m̂ are the vector forms of matrix M and M̂ , respectively. Ls is
Levin’s [16] matting Laplacian matrix generated from IS . The smallest eigenvec-
tors of the matting Laplacian correspond to the partitioning of images [16]. The
first term forces the agreement with the initial estimation M̂ , while the second
term forces the output to be aligned with the structure layer IS . We set the
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Fig. 5. This shows the effect of blocking artifacts reduction. The left side shows the
textural layers and its corresponding final composition results without the blocking
artifacts reduction step. The right side shows the same pair but with the effect of
blocking artifacts reduction. As can be seen both in texture and final results that the
block is less noticeable when we apply the block artifacts reduction. The similarity
against ground truth using SSIM for with and without deblocking are also shown in
the bracket.

regularization parameter α a large value (105 in our implementation), since it
will provide clearer edges in the mask M . The last column of Figure 4 shows the
texture region map after refinement using the structure IS . Most of the values
in the map are near 0 or 1 (close to binary), but some values are between the
two.

The result is a mask M whose edges have been refined. Another benefit of
aligning the mask to the structure layer is that small amounts of textures around
edges, which are indicative to ringing artifacts, are removed.

Block Artifacts Reduction Having created the mask indicating the regions
of scene details, we now try to reduce the potential blocking artifacts in the
regions. Denoting the texture image after blocking artifacts suppression as IdTi

,
an objective function is defined as follows:

min
IdTi

∑
i

(IdTi
− ITi

)2 + β
∑
i∈η

(∇IdTi
)2, (5)

where i is the pixel index, and η are the locations at the 8 × 8 block borders.
The first term forces the output to be similar to the input, while the second
term smooths the edges at the 8× 8 block borders, since they are more likely to
be block artifacts. The smoothness level is controlled by the weight term β. We
empirically set it 0.5 to achieve a proper compromise between oversmoothness
and noticeable artifacts. This is effective in reducing the blockings in the texture
map and result in a higher quantitative score as can be seen in Figure 5.
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3.3 Layer Recomposition

Having removed the artifacts in the texture layer, we now need to apply an
enhancement operation to the texture layer before adding it back to IeS . However,
since most contrast functions f are not linear and thus f(IS + IT ) 6= f(IS) +
f(IT ), we cannot simply apply the same process and then sum them up. As a
consequence, we have to approximate the enhancement function adjustment by
finding a scale multiplication factor K, which should obey the following condition
as much as possible: f(I) = f(IS) + KIT , where I is the original input image.
By denoting the enhanced texture layer as IeT , we intend to find the scale factor
K:

IeT = K ◦M ◦ IdT , (6)

where ◦ is the element-wise multiplication operator. M ◦ IdT combines the steps
in the previous section that generates the masked texture layer with reduced
artifacts.

Like in the case of enhancing contrast for the structure layer IS , the scale
factor depends on the applications. For the application of image tone-curve ad-
justment, the tone-curve function f is applied to the intensity values of the input
image, I. Taylor series f(t+∆t) ≈ f(t) + f ′(t)∆t allows us to write:

f(ISi
+ ITi

) = f(ISi
) + f ′(ISi

)ITi
. (7)

Hence, from the last equation, we have the scale factor for the tone adjustment
Ki = f ′(ISi).

In the dehazing or underwater application, the enhancement should consider
the optical model of scattering media, which according to [12], the output of the
enhancement should follow the following equation:

Iei =
Ii −A
ti

+A, (8)

where the Ii is the input image, A is the atmospheric light, ti is the transmission,
and i is pixel index. Therefore, the scale factor, Ki, should be approximately
equal to 1

ti
, since A is a constant and Iei is in Ii

ti
+ k form. Following [12], t is

obtained from dark channel prior and A is obtained from the patch with the
brightest intensity in dark channel.

Having recovered both the structure and texture layers, the final result can
be achieved by simply summing up the two layers: Ie = IeS + IeT .

4 Results

We evaluated our proposed framework by applying it to various contrast en-
hancement tasks: image tone-curve adjustment, dehazing and underwater visi-
bility enhancement. Due to space limitation, only some of our results are shown
here. More results are available in the supplemental material. Demo code and
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Low contrast (Q 40) Haze (Q 80) Underwater (Q 30)

Fig. 6. This figure shows the inputs in the section which require contrast boosting.

Table 1. Average Runtime Comparison

Method SA-DCT[10] FoE[19] NN[3] Ours

Runtime(s) 20 287 25 15

data are available at the author’s webpage 2. Experiments were performed on
a PC with Intel I7 CPU (3.4GHz) with 8GB RAM. The test images were either
self-taken or downloaded from the Internet. Three examples are shown in Figure
6. Note that, in these input images, there are often no noticeable artifacts. The
artifacts become apparent after the contrast enhancement is applied.

The entire process for an image (approximately 500× 600 in size) using our
current un-optimized matlab implementation took about 15 seconds with the
main bottleneck being the image matting which took more than 10 seconds.
The only parameter that needs to be changed was the regulation term λ in the
structure-texture decomposition in Eqn. (2). This parameter was set according
to the compression level. Higher compression requires larger λ for the decompo-
sition. λ = 0.02, 0.03, 0.04, 0.05 is used for > Q70, Q50 − Q70, Q30 − Q50 and
< Q30, respectively.

We compared our approach with several state-of-the-art deblocking methods:
a local filtering based method - shape adaptive DCT (SA-DCT) [10], a recon-
struction based using Field of Experts (FoE) prior [19] as well as a learning
based method using Neural Network (NN) [3]. These methods were all used as
both a pre-processing and post-processing step for the contrast enhancement
methods. We note that the comparison with NN is not fair since it is a more
general algorithm targeting on any kinds of noise (i.e. not just JPEG artifacts).
The average run-times of these algorithms are summarized in Table 1. Interest-

2 http://www.comp.nus.edu.sg/ liyu1988/

Table 2. Quantitative Comparison

Method simple
boosted

FoE[19] NN[3] SA-DCT
(Pre)[10]

SA-DCT
(Post)[10]

Ours

Mean SSIM 90.79 91.14 91.88 92.03 91.79 92.05
Mean PSNR 29.17 29.69 29.94 30.12 29.42 29.76
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Ours
92.90 / 28.12

Boosted
91.55 / 27.75

SA-DCT (Post) [10]
92.55 / 27.95

FoE [19]
92.10 / 28.07

NN [3]
92.84 / 28.24

SA-DCT (Pre) [10]
92.86 / 28.39 

Fig. 7. This figure shows an example in image tone-curve adjustment using FoE [19],
NN [3], SA-DCT [10] and our approach. Shown below the images are the comparison
SSIM/PSNR(dB) with respect to the groundtruth.

ingly, even though we apply layer decomposition and matting as parts of our
procedure, our method has the fastest performance among all.

For experiments involving tone-curve manipulation, we can also provide a
quantitative comparison with the groundtruth. The groundtruth image is ob-
tained by enhancing the uncompressed image using the same tone-curve. Quan-
titative results are reported using the perceptually-based quality measurement-
structure similarity index (SSIM) [24] (in ×100 scale) as well as the peak signal-
to-noise ratio (PSNR). Table 2 summarizes the average SSIM and average PSNR
on all our 15 test cases and at different compression levels (from Q20 to Q90).
Our approach achieves the highest SSIM but not the highest PSNR. As some-
times the case with PSNR, we believe it does not properly reflect the qualitative
results. On visual inspection of the images, it is clear our approach is qualita-
tively better than the other methods.

Figure 7 shows a tone-curve adjustment comparison. As can be seen, FoE and
NN successfully removed block artifacts which resulted in overall improvements
in both PSNR and SSIM. However, they tended to smooth sharp edges and
details in the image. SA-DCT lost its effectiveness in deblocking when used after
the enhancement, but when used before the enhancement, SA-DCT did a good
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Ours

Boosted FoE [19] NN [3]

SA-DCT (pre) [10] SA-DCT (post) [10]

Fig. 8. This figure shows an example of dehazing using FoE [19], NN [3], SA-DCT [10]
and our approach.

job and achieved the highest PSNR. However, upon close visual inspection, the
results of our method are much cleaner (less ringing artifacts) and more image
details preserved, resulting the highest SSIM value.

Figures 8 and 9 show examples of applying our method to dehazing and un-
derwater visibility enhancement. Here, since we do not have the groundtruth
recovered image, we can only show qualitative visual comparisons. In these ap-
plications, the advantage of our method becomes more observable. The results
of using FoE and NN are over smoothed, causing them to lose details. SA-DCT
slightly outperformed FoE and NN in reducing the compression artifacts. Ours
is better in terms of removing artifacts (particularly with much less ringings) as
well as preserving image details.

Due to the nature of this problem, the results are best viewed in the original
size. Thus, we provide larger images as well as more comparisons and results in
the supplemental material.

5 Discussion and Conclusion

We have introduced a framework to suppress artifacts appearing in JPEG images
that becomes prominently visible when applying contrast enhancement. While
the proposed framework is admittedly engineering in nature, our strategy of
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Boosted FoE [19] NN [3]

SA-DCT (Pre) [10] SA-DCT (Post) [10] Ours

Fig. 9. This figure shows an example of underwater image enhancement using FoE
[19], NN [3], SA-DCT [10] and our approach.

using structure and texture layer decomposition enables us to reduce the com-
pression artifacts in parallel with contrast enhancement, and to process them
independently to each other. With this integrated framework, the key benefit
is that we can process two tasks that are opposite to each other in terms of
functionality. On one hand, we have a task to suppress noise as much as possi-
ble; on the other hand, within the same image, we have a task to enhance the
content as much as possible. If these two tasks are processed sequentially, as pre-
or post-processing, the results are not likely to be optimum. Since, the process
of artifacts removal as pre-processing will remove the image content that have
low contrast, and as post-processing will be affected by the enhanced artifact-
s. As shown in our experiments, we have demonstrated the effectiveness of the
proposed framework using qualitative and quantitative measures.

While our approach targets suppressing JPEG compression artifacts for the
task of contrast enhancement, our framework is suitable to other applications
that have the same nature of problem. We consider JPEG compression artifacts
to be an important problem because these are commonly troublesome for many
computer vision and image processing algorithms that assume the input images
have little noise. We also consider contrast enhancement, since it is one of the
core operations in the low-level computer vision and image processing. Among
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other applications, it is crucially used to deal with turbid media, such as haze,
fog, rain, and underwater, which has been addressed considerably in computer
vision community recently.

Regarding our framework, the remaining question is whether our structure,
texture, and masked texture layers can effectively distill JPEG images into a
layer that is mostly image content and also into another layer that is mostly
affected by compression artifacts. While our practical findings discussed in the
paper have given us a positive answer (and we consider as a contribution that
can be improved further), rigorous evaluation is still needed, and we will consider
this in our future work.
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